High Performing Free-Form Design and Material **Optimization for Additive Layer Manufacturing**

MOX, Politecnico di Milano & Thales Alenia Space A.N. Albini, S. Micheletti, S. Perotto, L. Soli, D.A. Tobia

Advanced mathematical techniques yield structures and forms that classical industrial processes are not able to design.

FREE-FORM

shape optimization

topological optimization

The reference physical-mathematical model is based on the linear elasticity system : $-\nabla \cdot \sigma(\mathbf{u}) = \mathbf{0}$ in Ω $\mathbf{u} = \mathbf{0}$ on Γ_D

Two optimization strategies :

IPOPT (interior point optimizer)

$\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x}) s.t.$		
$x_i^{lb} \leq x_i \leq x_i^{ub}$	i = 1 : n	(
$c_i^{lb} \leq c_i(\mathbf{x}) \leq c_i^{ub}$	i = 1 : m	١

ThalesAlenia

A Thales / Finmeccanica Company

OC (optimality criteria)

	IPOPT	OC
COMPLIANCE [m/N]	0.0016	0.0025
VOLUME FRACTION	0.5	0.37

(E) $\sigma(\mathbf{u})\mathbf{n} = \mathbf{f}$ on Γ_N $\sigma(\mathbf{u})\mathbf{n} = \mathbf{0}$ on Γ_F

Topological optimization leads to solve the constrained optimization problem for the compliance /:

Find
$$\rho: \Omega \to [0, 1]$$
 with $\rho \in L^{\infty}(\Omega)$ such that

$$\lim_{u(\rho) \in U} l(u) + \begin{cases} (E) \\ \int_{\Omega} \rho d\Omega = Vol(\Omega^{mat}) \le \alpha V_0 \\ \rho_{min} \le \rho \le 1 \end{cases}$$
Expect the
unexpected

Topological optimization enhances the performances :

	Material	AL6082 T6	TI-6AL-4V
ΓN	Max Displacement [m]	5.64 E-6	3.46 E-6
Ch.	Von Mises Stress [Pa]	3.72 E+6	3.49 E+6
D	Compliance [m/N]	10.11	6.18
	First Eigenfrequency [Hz]	1967.3	1959.7
	Mass [kg]	0.0059	0.0097

Material	AL6082 T6	TI-6AL-4V
Max Displacement [m]	1.34 E-5	1.21 E-5
Von Mises Stress [Pa]	4.2 E+6	4.01 E+6
Compliance $[m/N]$	14.2	13.1
First Eigenfrequency[Hz]	3303.9	2965.1
Mass [Kg]	0.00298	0.0048

Free-form design for ALM

From 3D model to printing

. 1.849e+000 . 9.245e-001

Unexpected forms are automatically designed :

Be stiff but save the mass :

ALM makes your dreams come true !!

@ThalesAleniaSpace

Minimizing material waste.

Saving mass and cost by ALM design :